

Iberian Journal of Applied Sciences and Innovations

Challenges in Integrity of E-voting Systems:

Important Properties, Threats, and Solutions

Mohsen Borousan

Asia Pacific University of Technology & Innovation

Kuala Lumpur, Malaysia

Mohsen.boroosan@gmail.com

Mostafa Kateb

Department of Electical Engineering, Science and research

Branch, Islamic Azad Univerity, Tehran ,Iran

mostafakateb@gmail.com

Abstract— Today, developed and developing countries are

moving more and more towards e-government systems to deliver

integrated, fast, and cheaper services to their citizens. Electronic

voting is one of the crucial domains in this area, as the results of

the elections profoundly affect the future of the nation and even

other countries. Confidentiality, integrity, and availability are the

three sides of the CIA triangle that are the principal measurements

for evaluating the security of the employed e-voting systems. Since

system and data integrity are crucial factors for preserving the

security of the designed and developed systems, this study explores

the properties, threats, solutions, and unresolved challenges in

integrity of e-voting systems, to help researchers, designers, and

developers evaluate their systems in term of integrity.

Keywords— voting integrity; e-voting; e-government; voting

security

I. INTRODUCTION

In the traditional practices of paper balloting and hand

counting, not only the whole process is observable for the

public, but also it is simply understandable to the average

voters. In the beginning, the empty ballot box is sealed by the

polling staff, and after the election, the seal can be broken and

the votes are counted in front of observers [1]. This simplicity

and transparency make it easy for observers to identify likely

errors. At the same time, candidate agents, political parties, and

the media can perform a monitoring function [2].

This simplicity and transparency are lacking in the e-voting

systems, as the complexity of the systems is only

understandable for the field experts. E-voting systems utilize

black-box technology that receives input from voters and then

generates an output that is not simply verifiable by observers

and even the election administrators [3,4]. This is the point

where the integrity, transparency and trust problems arise. As a

result, in the e-voting systems, complementary measurements

are required to serve the same level of assurance as traditional

practices [5]. These measurements may include the followings:

Transparency: is a way to satisfy the integrity problem in e-

voting and vote counting technologies [4,6]. While this feature

alone does not guarantee the accuracy of the results, it provides

the ground to achieve this goal. Transparency in e-voting lets

the electoral management bodies (EMB) and stakeholders to

supervise the critical elements of the process, and avoid

intentional and accidental errors [6].

Testing and certification: due to the lack of transparency in

e-voting systems and counting process, compared to traditional

paper balloting practices, it is critical that election

administrators test and verify the voting machines to build trust

and confidence before they are used [7]. Testing and

verification are needed to guarantee that the machines meet the

criteria defined by the EMB. The test results should be reviewed

by observers and electoral contestants to ensure public

confidence [8].

Additionally, some countries only accept certified e-voting

and counting technologies. These certifications serve the same

as testing procedures. However, the issuance of certifications

should be independent of political parties, EMB, suppliers and

government [9,10]. Ideally, the certification process must

happen by a widely accepted source and through a transparent

and open procedure.

Authentication: is the process of digitally signing the tested

and verified software [11]. The signature can be verified by

those which observe the election. Moreover, the validity of data

in transition stages - like sending votes for the tabulation

 2021 vol 1, Issue 2

http://iberianjournals.com/iberian-journal-of-applied-sciences-and-innovations/

process – need to be verified as well; otherwise, the votes could

be simply manipulated [11].

To prevent alteration of the votes, only the data with

authentic digital signature are acceptable to be passed into the

tabulation system. Transmission of the results requires

safeguards that are monitored by candidate/party agents [11].

Audit: is verifying the operations and auditing the results of

an e-voting or counting system. The most practiced way is using

a voter-verified paper audit trail (VVPAT) that delivers the

paper trail of the casted vote to the voter [12].

The audit trail is a critical factor for verifying the accuracy

of the e-voting machines or counting process [12]. A randomly

selected audit trail should be verifiable against the e-voting

results to prove the consistency of the electronic and audit trails.

Such a verification, if made for the public, has a great influence

on the public trust [12].

II. LITERATURE REVIEW

E-voting integrity deals with system trustworthiness,
including both provided function and data. In other words, it is
to implement safeguards to protect e-voting data and software
against changes in unauthorized ways. A solution to resolve the
integrity issues of stored data is to utilize cryptographic
protocols and techniques like public-key, homomorphic
cryptography, Secure Socket Layer (SSL), and transport layer
security (TLS) [13]. E-voting schemes utilize various techniques
to enhance the preservation of their integrity. Some of the
prominent schemes are as follows.

Since the date of introducing Votegrity [14] – the first end-
to-end (E2E) verifiable e-voting protocol - various e-voting
protocols have been introduced. In E2E, the voters can verify if
their votes are cast and counted correctly in the final tally.
Additionally, public members are able to verify the election
externally. Some of the prominent E2E-based e-voting schemes
include STAR-Vote [15], Helios [16], Scantegrity [17], Prêt à
Voter [18], and Neff’s Markpledge [19].

Some types of E2E-based protocols employ the public web
bulletin board (WBB) to show the total casted ballots for the
public. WBB is a broadcasting channel which displays the casted
ballots in encrypted form, once the voters cast their votes and
received the receipt of their encrypted votes [20,21,22]. Vote
receipt is an important feature of the e-voting protocols, as a way
to prove the vote in case of a dispute.

Apollo [23] is a developed version of Helios protocol which
resolves some of the Helios' security drawbacks. Voting
assistants is an added feature that helps in verifying, locking and
auditing the votes. The assistants are external devices to the
voting protocol that are designed for checking the bulletin board
and displaying the value of the vote in plaintext format, after
casting it [23].

Mixing is another technique that shuffles the votes’ data in a
random sequence before transmitting it to the next destination
[24]. Zeus [25] is a sample protocol designed based on mixing
technology. It runs the mixing procedure to remove the links
between the encrypted ballots and the voters, in multiple rounds.

Homomorphic tally is a widely applied technique that
involves modifications like addition and multiplication to the
ciphertext during the decryption process. E-voting schemes like
STAR-Vote [26] and Helios 2.0 [27] utilize homomorphic
cryptography for tallying the votes, because of its simplicity in
both application and verification by the public.

A number of protocols like Apollo [28] and Zeus [25] are
designed based on the Helios system while trying to mitigate
some of its security drawbacks. For example, clickjacking,
cross-site forgery, cross-site scripting, and clash attacks are
resolved in Apollo by utilizing the voting assistants feature.

III. CHALLENGES IN DATA AND SOFTWARE INTEGRITY OF

E-VOTING SYSTEMS

The integrity properties could be fallen into two categories

of software and data integrity. Data integrity is protecting the

integrity of audit records and election records (especially votes)

[5,39]. Software integrity is to ensure that only genuine and

unchanged software will be run on the electronic components

[11,38].

A. Important propertiesof data integrity

Collected data during running an electronic election is the

most important asset of the system. This asset includes stored

data, transmitted data, and system recovery/traceability data.

The following definitions are the criteria for preserving the

safety and integrity of this asset [11,29].

Accuracy: the results of elections are only figured based on

votes of participated voters.

Auditability: during running the election and after it the

system behavior is traceable.

Verifiability: auditors will be able to verify election results

based on the shreds of evidence provided by the system.

Public verifiability: normal people independently are able to

verify election results.

Traceability: every needed information will be recorded to

let officials trace the cause of any problem.

Recoverability: every needed information will be stored to

let recover in case of breaching integrity.

Preventing data alteration: any unauthorized modification,

insertion, or deletion of data is prevented.

Data alteration logging: logging component of the e-voting

system, records any data modification which may affect the

results.

Data authenticity: the system must present enough evidence

for auditors to show which record is generated by which entity.

B. Important properties of software integrity

Since the servers store sensitive votes’ information, voters,

and technical data for system recovery and traceability are very

important to ensure they only run authorized software, and their

programs have no important security defect [30,41]. The

following definitions and criteria explain the integrity features

that an e-voting software must meet [31,40].

Server software integrity: to ensure front-end and back-end

components will run only the authorized software.

Server software authenticity: the authenticity of the installed

software must be evaluable by auditors and administrators (to

prevent the installation of malware).

Application of proper software engineering model: the

chosen software development model must be one of the best

software engineering practices.

IV. INTEGRITY THREATS AND SOLUTIONS OF E-VOTING

SYSTEMS

A. Threats of e-voting systems

E-voting systems, the same as other electronic systems, are

subject to attacks or having bugs [31,37]. This may result in

integrity loss and modification of election results. Particularly,

if the chosen platforms are either public or private computers,

it would be more vulnerable [28,29].

Software bugs: software bugs, the same as malicious codes,

are one of the most important roots of integrity loss.

Statistically, every 1000 lines of codes would have 15 to 50

errors [28,36]. Considering the fact that e-voting systems are

constituted from thousands of lines, the likeliness of the

existence of bugs is highly considerable.

Server malicious codes: the malicious codes which aim to

change election results could be installed on e-voting systems,

even by their IT staff or administrators, to affect the election

results [28,35].

Data and records modification: attackers, which potentially

also could be the administrators, due to integrity or

vulnerability issues may modify the records to affect the results

[29,34].

Client malicious codes: as far as normally non-expert users

operate client machines, these systems are more prone to be

compromised by attackers via running malicious codes, worms,

Trojans, or viruses, to take control of systems, collect the

important information, or even abusing it as stepping stone to

penetrate other systems [30].

B. Solutions of integrity threats

In this part, the important techniques for solving or

mitigating integrity threats of e-voting systems are counted and

described.

Integrity preservation through cryptography techniques:

some cryptographic techniques are designed for protection of

the integrity of transmitted data over insecure networks like

Transport Layer Security (TLS) or Secure Socket Layer (SSL).

In addition, data alteration examination techniques like

Message Authentication Codes (MAC) or digital signature also

can verify the integrity of the stored data [32,42].

Modern cryptographic techniques: end-to-end

cryptographic voting techniques are the algorithms which are

able to detect attacks if the final result is not aggregated on

casted votes. Moreover, these protocols let people verify

whether their votes are correctly counted [43,44].

Using voter side trusted hardware components: if the

chosen platform is public or personal computers, the voting

platforms are not trustable. Therefore, to overcome the insecure

platform issues, trusted hardware could be designed and

distributed among voters. Even though the implementation of

this method is not economic, but it could be used as a

multipurpose platform for e-voting, e-commerce, and other

similar applications [45,46].

Malware detection and prevention systems: by heuristic

methods or based on the signature of malicious codes, anti-

malware programs are able to detect the presence of malicious

codes. Though these programs are useful, they are able to detect

only known signatures and even in some cases, they fail to

remove the recognized malware. Using an up-to-date anti-

malware distribution is a useful idea, but only for the mitigation

of threats of malicious codes and not to solve this problem

[26,33].

Remote software verification: end-point scanning software

helps in scanning the computers in virtual private networks for

security protection. These programs can scan the computers

remotely for ensuring that they will only run authorized

software [24,58].

Formal software verification: is a mathematical technique

to prove the correctness of the written codes. In this type of

verification, the codes must be accurately described as an

algorithm. Performing this type of verification is very

expensive and hard, and only for particular applications like

military software or avionic programs is reasonable [49,50].

Bootable DVDs or CDs: bootable DVDs or CDs that contain

needed software and applications for secure vote casting over

public or private computers could be distributed among all of

the voters, to help them boot up and use their computers in a

safe manner. Running this process is expensive, hard, and

insecure as the users may not recognize genuine DVDs or CDs

from the fake ones. They may not run on all computers, and also

the voters’ mailing addresses may not be up to date.

Accordingly, many of the voters may not receive DVDs or CDs

[26,27].

Virtual machines: virtual machines could be used to provide

a secure environment as a solution to bypass some difficulties

and problems of distribution of bootable DVDs or CDs. These

types of virtual machines do not require any configuration or

any driver and use resources of the host computer. The main

defects of this idea are the danger of distribution of fraudulent

images infected by malicious codes and logistical difficulties of

distribution of virtual machines for the images [47,48].

Second channel: as the computers might be infected by

malicious codes or viruses, for verification of casted votes the

voters can use a secondary channel like SMS or telephone to

ensure that their votes are cast precisely. This e-voting model

has outstanding usability problems [51,52].

Unintelligible contents for malware: easy and helpful

techniques like CAPTCHA could be employed to prevent the

modification of votes by malware. Since still no malware kit is

designed which can support passing the CAPTCHAs, this

technique could be utilized to prevent malware to vote on behalf

of the people [53,54].

C. Major unresolved integrity issues of e-voting systems

Despite all developments of security techniques, still, there

are some unsolved serious defects. The most current major

integrity issues are:

Security of personal computers: still many important

security threats like botnets, malware, or viruses exist that

endanger the security of personal computers for casting secure

votes [55,56].

Software security problem: despite many techniques are

developed for discovering software security bugs, still, there is

no guaranty that all of the bugs get discovered. After

deployment, the attackers can exploit software bugs to modify

election results [30,57].

Problems of advanced cryptographic techniques: despite

the advanced cryptographic techniques that can dramatically

enhance security, but only certain types of attacks can be

detected and still there is no way to recover the original votes

[30,31].

V. CONCLUSION

E-government is a growing field, especially in developing
countries. E-voting is one of the most important aspects of e-
government as it has a great influence on people’s life. Every
developed system, especially those involved in the government
area, must be secured against attackers to ban abuse of the
system. CIA triangle defines the principal criteria which a secure
system must meet. Since these criteria' details depend on the
applied system, the relevant concepts and concerns must be
clearly distinguished. This study reviews the concepts, threats,
and solutions involved in the integrity of e-voting systems. In
the last section, the remained and unresolved challenges are
discussed.

 REFERENCES

[1] Zamani M, Manaf AA, Ahmad R, Jaryani F, Taherdoost H, Shojae

Chaeikar S, Zeidanloo HR. A novel approach for genetic audio

watermarking. Journal of Information Assurance and Security.

2010;5:102-11.

[2] Karamizadeh, S., Abdullah, S. M., Manaf, A. A., Zamani, M., &

Hooman, A. (2013). An overview of principal component

analysis. Journal of Signal and Information Processing, 4(3B), 173.

[3] Manaf AB, Zamani M, Ahmad RB, Jaryani F, Taherdoost H, Shojae

Chaeikar S, Zeidanloo HR. Genetic Audio Steganography.

International J. of Recent Trends in Engineering and Technology.

2010 May;3(2).

[4] Karamizadeh, S., Abdullah, S. M., Halimi, M., Shayan, J., & javad

Rajabi, M. (2014, September). Advantage and drawback of support

vector machine functionality. In 2014 International conference on

computer, communications, and control technology (I4CT) (pp. 63-

65). IEEE.

[5] Shojae Chaeikar S, Jafari M, Taherdoost H, Kar NS. Definitions and

criteria of CIA security triangle in electronic voting system.

International Journal of Advanced Computer Science and

Information Technology. 2012 Oct;1(1):14-24.

[6] Azarnik, A., & Shayan, J. (2012). Associated risks of cloud

computing for SMEs. Open International Journal of Informatics

(OIJI), 1(1), 37-45.

[7] Zamani M, Abdul Manaf AB, Zeidanloo HR, Shojae Chaeikar S. Genetic

substitution-based audio steganography for high capacity applications.

International Journal of Internet Technology and Secured Transactions.

2011 Jan 1;3(1):97-110.

[8] Alizadeh, M., Salleh, M., Zamani, M., Shayan, J., & Karamizadeh, S.

(2012). Security and performance evaluation of lightweight

cryptographic algorithms in RFID. Kos Island, Greece.

[9] Shojae Chaeikar S, Zamani M, Manaf AB, Zeki AM. PSW statistical

LSB image steganalysis. Multimedia Tools and Applications.

2018:77(1):805-835.

[10] Shayan, J., Azarnik, A., Chuprat, S., Karamizadeh, S., & Alizadeh, M.

(2014). Identifying Benefits and risks associated with utilizing cloud

computing. arXiv preprint arXiv:1401.5155.

[11] Zeidanloo HR, Manaf AB, Ahmad RB, Zamani M, Shojae Chaeikar S.

A proposed framework for P2P Botnet detection. International Journal

of Engineering and Technology. 2010 Apr 1;2(2):161.

[12] Hooman, A., Marthandan, G., Yusoff, W. F. W., Omid, M., &

Karamizadeh, S. (2016). Statistical and data mining methods in credit

scoring. The Journal of Developing Areas, 50(5), 371-381.

[13] Taherdoost H, Sahibuddin S, Namayandeh M, Jalaliyoon N, Kalantari A,

Shojae Chaeikar S. Smart card adoption model: Social and ethical

perspectives. Science. 2012 Aug;3(4).

[14] Mollaie, F., Alizadeh, M., Dadsetan, S., & Rashno, A. (2013).

Implementation and evaluation of lightweight encryption algorithms

suitable for RFID. Journal of Next Generation Information

Technology, 4, 65-77.

[15] Yazdanpanah S, Shojae Chaeikar S. IKM-based Security Usability

Enhancement Model. IRACST-International Journal of Computer

Science and Information Technology & Security (IJCSITS). 2012

Aug(4).

[16] Dehzangi, A., & Karamizadeh, S. (2011). Solving protein fold prediction

problem using fusion of heterogeneous classifiers. INFORMATION, An

International Interdisciplinary Journal, 14(11), 3611-3622.

[17] Mazdak Z, Azizah BA, Shahidan MA, Shojae Chaeikar S. Mazdak

technique for PSNR estimation in audio steganography. Applied

Mechanics and Materials. 2012:1(229): 2798-2803.

[18] Fard, M. A. K., Karamizadeh, S., & Aflaki, M. (2011). Enhancing

congestion control to address link failure loss over mobile ad-hoc

network. arXiv preprint arXiv:1110.2289.

[19] Shojae Chaeikar S, Zamani M, Chukwuekezie CS, Alizadeh M.

Electronic Voting Systems for European Union Countries. Journal of

Next Generation Information Technology. 2013 Jul 1;4(5):16.

[20] Karamizadeh, S., Abdullah, S. M., Zamani, M., & Kherikhah, A. (2015).

Pattern recognition techniques: studies on appropriate classifications.

In Advanced Computer and Communication Engineering

Technology (pp. 791-799). Springer, Cham.

[21] Alizadeh M, Hassan WH, Zamani M, Khodadadi T, Shojae Chaeikar S.

A prospective study of mobile cloud computing. International Journal of

Advancements in Computing Technology. 2013;5(11):198-210.

[22] Alizadeh, M., Hassan, W. H., Behboodian, N., & Karamizadeh, S.

(2013). A brief review of mobile cloud computing

opportunities. Research Notes in Information Science, 12, 155-160.

[23] Yazdanpanah S, Shojae Chaeikar S. Secure SMS Method Based on

Social Networks. International Journal of Scientific Research in Science,

Engineering and Technology. 2016: 2(6): 368-376.

[24] Karamizadeh, S., Abdullah, S. M., & Zamani, M. (2013). An overview

of holistic face recognition. IJRCCT, 2(9), 738-741.

[25] Shojae Chaeikar S, Ahmadi A. Ensemble SW image steganalysis: a low

dimension method for LSBR detection. Signal Processing: Image

Communication. 2019:70: 233-245.

[26] Karamizadeh, F. (2015). Face Recognition by Implying Illumination

Techniques–A Review Paper. Journal of Science and

Engineering, 6(01), 001-007.

[27] Shojae Chaeikar S, Manaf AA, Alarood AA, Zamani M. PFW: polygonal

fuzzy weighted - an SVM kernel for the classification of overlapping

data groups. Electronics. 2020: 9, 615.

[28] Karamizadeh, S., & Arabsorkhi, A. (2018, January). Methods of

pornography detection. In Proceedings of the 10th International

Conference on Computer Modeling and Simulation (pp. 33-38).

[29] Shojae Chaeikar S, Manaf AB, Zamani M. Comparative analysis of

Master-key and Interpretative Key Management (IKM) frameworks. In

Cryptography and Security in Computing 2012. InTech.

[30] Karamizadeh, S., Abdullah, S. M., Zamani, M., Shayan, J., &

Nooralishahi, P. (2017). Face recognition via taxonomy of illumination

normalization. In Multimedia Forensics and Security (pp. 139-160).

Springer, Cham.

[31] Shojae Chaeikar S, Moghaddam HS, Zeidanloo HR. Node Based

Interpretative Key Management Framework. In Security and

Management 2010 (pp. 204-210).

[32] Karamizadeha, S., Mabdullahb, S., Randjbaranc, E., & Rajabid, M. J.

(2015). A review on techniques of illumination in face

recognition. Technology, 3(02), 79-83.

[33] Shojae Chaeikar S, Razak SA, Honarbakhsh S, Zeidanloo HR, Zamani

M, Jaryani F. Interpretative key management (IKM), a novel framework.

In 2010 Second International Conference on Computer Research and

Development, 2010 May 7 (pp. 265-269). IEEE.

[34] Karamizadeh, S., Cheraghi, S. M., & MazdakZamani, M. (2015).

Filtering based illumination normalization techniques for face

recognition. Indonesian Journal of Electrical Engineering and Computer

Science, 13(2), 314-320.

[35] Zamani M, Manaf AB, Ahmad RB, Jaryani F, Shojae Chaeikar S,

Zeidanloo HR. Genetic audio watermarking. In International Conference

on Business Administration and Information Processing, 2010 Mar 26

(pp. 514-517). Springer, Berlin, Heidelberg.

[36] Fard, M. A. K., Karamizadeh, S., & Aflaki, M. (2011). Enhancing

congestion control to address link failure loss over mobile ad-hoc

network. arXiv preprint arXiv:1110.2289.

[37] Yazdanpanah S, Shojae Chaeikar S, Zamani M, Kourdi R. Security

features comparison of master key and IKM cryptographic key

management for researchers and developers. In International Conference

on Software Technology and Engineering, 3rd(ICSTE 2011) 2011.

ASME Press.

[38] Shayan, J., Abdullah, S. M., & Karamizadeh, S. (2015, August). An

overview of objectionable image detection. In 2015 International

Symposium on Technology Management and Emerging Technologies

(ISTMET) (pp. 396-400). IEEE.

[39] Sen J, editor. Cryptography and Security in Computing. BoD–Books on

Demand; 2012 Mar 7.

[40] Fard, M. A. K., Karamizadeh, S., & Aflaki, M. (2011, May). Packet loss

differentiation of TCP over mobile ad hoc network using queue usage

estimation. In 2011 IEEE 3rd International Conference on

Communication Software and Networks (pp. 81-85). IEEE.

[41] Honarbakhsh S, Masrom M, Zamani M, Chaeikar SS, Honarbakhsh R.

A Trust Based Clustering Model for Dynamic Monitoring in Ad hoc

Network. InInternational Conference on Computer and Computational

Intelligence (ICCCI 2010) 2010 Dec 25.

[42] Karamizadeh, S., Shayan, J., Alizadeh, M., & Kheirkhah, A. (2013).

Information Security Awareness Behavior: A Conceptual Model for

Cloud. International Journal Of Computers & Technology, 10(1), 1186-

1191.

[43] Shojae Chaeikar S. Pixel Similarity Weight for Statistical Image

Steganalysis [dissertation]. Universiti Teknologi Malaysia; 2016.

[44] Karamizadeh, S., & Abdullah, S. M. (2018). Race classification using

gaussian-based weight K-nn algorithm for face recognition. Journal of

Engineering Research, 6(2), 103-121.

[45] Zamani M, Manaf AB, Abdullah SM, Shojae Chaeikar S. Correlation

between PSNR and bit per sample rate in audio steganography.

In11thInternational Conference on Signal Processing 2012 Apr 2 (pp.

163-8).

[46] Karamizadeh, S., Abdullah, S. M., Shayan, J., Nooralishahi, P., &

Bagherian, B. (2017). Threshold Based Skin Color

Classification. Journal of Telecommunication, Electronic and Computer

Engineering (JTEC), 9(2-3), 131-134.

[47] Shojae Chaeikar S, Ahmadi A. SW: a blind LSBR image steganalysis

technique. In the 10thInternational Conference on Computer Modeling

and Simulation2018 Jan 8 (pp. 14-18). ACM.

[48] Fard, M. A. K., Bakar, K. A., Karamizadeh, S., & Foladizadeh, R. H.

(2011, May). Improve TCP performance over mobile ad hoc network by

retransmission timeout adjustment. In 2011 IEEE 3rd International

Conference on Communication Software and Networks (pp. 437-441).

IEEE.

[49] Shojae Chaeikar S. Interpretative Key Management Framework (IKM)

[dissertation]. Universiti Teknologi Malaysia; 2010.

[50] Karamizadeh, S., Abdullah, S. M., Shayan, J., Zamani, M., &

Nooralishahi, P. (2017). Taxonomy of Filtering Based Illumination

Normalization for Face Recognition. Journal of Telecommunication,

Electronic and Computer Engineering (JTEC), 9(1-5), 135-139.

[51] Azarnik, A., SHAYAN, J., ZADEH, S. K., & PASHANG, A. (2013,

February). Lightweight authentication for user access to Wireless Sensor

networks. In Proceedings of the 12th WSEAS Int. Conf. on Electronics,

Hardware, Wireless and Optical Communications (EHAC’13),

Cambridge, UK (pp. 35-39).

[52] Duan, W., Nasiri, R., & Karamizadeh, S. (2019, December). Smart City

Concepts and Dimensions. In Proceedings of the 2019 7th International

Conference on Information Technology: IoT and Smart City (pp. 488-

492).

[53] Karamizadeh, S., & Arabsorkhi, A. (2017). Enhancement of Illumination

scheme for Adult Image Recognition. International Journal of

Information and Communication Technology Research, 9(4), 50-56.

[54] Dehzangi, A., Foladizadeh, R. H., Aflaki, M., & Karamizadeh, S. (2011,

April). The application of fusion of heterogeneous meta classifiers to

enhance protein fold prediction accuracy. In Asian Conference on

Intelligent Information and Database Systems (pp. 538-547). Springer,

Berlin, Heidelberg.

[55] Karamizadeh, S., & Arabsorkhi, A. (2018). Skin Classification for Adult

Image Recognition Based on Combination of Gaussian and Weight-

KNN. International Journal of Information and Communication

Technology Research, 10(2), 56-62.

[56] Zadeh, S. K. (2012). Information Security Behaviours in Enhancing

Awareness (Doctoral dissertation, Universiti Teknologi Malaysia).

[57] Fard, M. A. K., Karamizadeh, S., & Aflaki, M. (2011). Enhancing

congestion control to address link failure loss over mobile ad-hoc

network. arXiv preprint arXiv:1110.2289.

[58] arabsorkhi A, karamizadeh S. Method to improve the illumination

normalization in adult images based on fuzzy neural network. فصلنامه

 1-12: (and 42 41) فناوری اطلاعات. 2020; 11

URL: http://jor.iranaict.ir/article-1-1503 en.html

http://jor.iranaict.ir/article-1-1503%20en.html

Iberian Journal of Applied Sciences and Innovations

Constructing New Features for Spam Detection on

Twitter

Arash Erami

Department of Computer
Engineering, Shiraz Branch,

Islamic Azad University,
Shiraz, Iran

arsherami@gmail.com

Elham Parvinnia*
Department of Computer

Engineering, Shiraz Branch, Islamic
Azad University, Shiraz, Iran

parvinnia@iaushiraz.ac.ir

Abstract—Nowadays, by the growth of the internet, social

networks are attracting unprecedented attention to themselves.

Most people are at least active in one social network. Users in

social networks follow their favorite people and topics to discover

the latest news about them. This rising number of users has made

social networks fertile grounds for advertising and finding the

bait. Social networks also become celebrities’ popularity criterion.

The problem is that some accounts created to spread malicious

links, steal user’s information, and display advertising. These

accounts are mainly controlled and supervised by an automatic

program. Not only the increase in fake accounts has costs for social

networks companies, but it also influences network quality. In this

paper, we offer some new and low-cost features to distinguish

spam accounts on Twitter. This paper offers some low cost and a

new feature to distinguish spam accounts of Twitter. We apply

machine learning algorithms to predestined datasets, and by

looking at the characteristics of the accounts, then we anticipate

class of users by the accuracy of 99.18%.

KeyWords— Spam Detection • Machine Learning • Twitter

Spam Bots • Feature Extraction.

I. INTRODUCTION

Online Social Networks (OSNs) have spread at a remarkable
speed over the past decade. They have become one of the main
ways for people to keep track of events and communicate with
one another. Websites such as Facebook, Twitter, and LinkedIn
are consistently on the top 20 most-visited websites. Twitter is
the fastest growing social networking web site among all the
social networking websites [1]. The increase in the use of social
networking websites is gaining a great deal of recognition
because they play a double role of online social networking and
micro-blogging, but these websites have constraints, i.e., the
spammers.

Twitter is a popular online social networking and
microblogging tool, which allows users to share content limited

to 140 characters. These small messages (tweets) create
substantial information dissemination in the network and make
Twitter a successful social network for content share. There are
about 500 million tweets published every day [expanded
ramblings, 2015].

Spam is becoming a significant problem with Twitter as well
as with other online social networking websites. Spammers can
use Twitter as a tool to send unsolicited messages to legitimate
users, post malicious links, and hijack trending topics.
Spammers could be phishers, malware propagators, marketers,
and adult content propagators. Fake followers are Twitter
accounts specifically created to inflate the number of followers
of a target account, in order to increase its popularity and
influence.

With more than 500 million users on Twitter, it is almost
impossible to manually verify the identity of every user who
signs up on Twitter, and it is even more challenging to keep track
of users who tend to spread information of questionable
authenticity, unknowingly or deliberately. Therefore, we need
some tools to identify these spammers automatically.

More than 19% of all tweets are about organizations or
product brands, less than 20% of which are shown to have
significant sentiment [13].

Since spam bots amend their behaviors to remain
undetected, we need some new features to detect them. In this
work, we combine features and make new rules to distinguish a
spam account from a legitimate one.

a) Spam Bots and Sybil Accounts

There are several ways to take advantage of free online

advertisement, and many agencies and companies rely on Spam

Bots or Sybil accounts. These fake accounts pretend to be

2021 vol 1, Issue 2

http://iberianjournals.com/iberian-journal-of-applied-sciences-and-innovations/
http://iberianjournals.com/iberian-journal-of-applied-sciences-and-innovations/
http://iberianjournals.com/iberian-journal-of-applied-sciences-and-innovations/
http://iberianjournals.com/iberian-journal-of-applied-sciences-and-innovations/
mailto:arsherami@gmail.com

legitimate distinct users, and their behavior seems to be similar

[12]. Some of these accounts might seem surprisingly akin to

being legitimate. They cause the social network platform

millions of dollars in revenue loss each year.

In a social network such as Twitter, users can access all public

information, including usernames, tweets, etc. Spammers need

to parse the public content to get all the information they need

for both sending the malicious content (usernames) and for

making it appealing to the victim (relationships, interests, and

content of previous messages). By using this information, it is

possible to semantic to analyze victim accounts.

b) Roadmap

The remainder of this paper is structured as follows. In
Section 2, we consider related work in Twitter spams and bot
detection. In Section 3, we describe the outlines of our baseline
dataset. In Section 4, we extract and examine some new features
of our baseline dataset. In Section 5, we present our results and
compare them to previous works. In Section 6, we present
possible methods for future work.

II. RELATED WORK

[8] used a machine learning approach to distinguish spam bots

from normal ones. He suggested three graph-based features and

three content-based features. They used graph-based features

such as a number of friends, a number of followers, and a

follower ratio. He also extracted the number of duplicate tweets,

the number of HTTP links and the number of replies/mentions

from the user’s 20 most recent tweets. His best overall

performance was .917 by Naïve Bayesian algorithm.

Some research focused on analyzing the behaviors of social

spammers and detecting these spammers [5] [4]; [11]. LEE, K,

and others conducted a long-term study of content polluters,

analyzed their behaviors, and detected them. [6] used a machine

learning approach to detect social spammers.

In other work [10], researchers suggested some new features and

used the profile-based feature, content-based feature, graph-

based features to distinguish spammers.

[7] analyze how spammers operate in social network sites

operate. They created a large and diverse set of “honey-profiles”

on three large social network sites and logged the messages and

friends request they received. They analyzed the collected data

and identified the anomalous behaviors of users who contacted

predestine profiles. Based on the analysis of their behaviors,

they showed that it is possible to automatically identify the

accounts used by spammers and correctly detected 15,857 spam

profiles.

III. DATASET

In this section, we describe the datasets of Twitter accounts that

we used to conduct our study throughout the paper. We use “The

Fake Project Dataset” provided by MIB Datasets, which is

publicly available to the scientific community. This dataset

contains five different sources of Twitter user’s data in two

classes: Human and Fake. Gathering data from multiple sources

make the data more reliable because each source contains

different kinds of behaviors and information. More information

on the dataset can be found in [2] as we use the same dataset in

order to compare the result.

Each source contains four separate files named: followers,

friends, tweets, users. Here are the details of each file:

Followers: The list of user IDs and the IDs of their followers

Friends: The list of user IDs and the IDs of their friends

Tweets: Contains 19 attributes of a tweet like a tweet text, time

of creation, number of hashtags, user ID, tweet ID, the source of

the tweet, etc.

Users: Contains user ‘s information from such as name, number

of friends, location, description, language, profile text color,

class, etc.

In each file, we have a user`s ID so that we can join files together

by a unique User ID.

Since we only had 1950 genuine users and many machine

learning algorithms are affected by the imbalance [9] of natural

distributions of the minority and majority classes, we selected

all human users and randomly selected 1950 accounts out of

3351 bots accounts, to balance out both categories. Table 1

provides the details of this dataset.

Table 1: Brief Description of Our Dataset Sources

Accounts Dataset

469 TFP(@TheFakeProject)

1481 E13 (#elezzioni2013)

1337 INT(intertwitter)

845 TWT(twittertechnology)

1169 FSF(fasstfolliwerz)

1950 HUM(total human

dataset)

3351 FAKE(total fake

dataset)

3900 BAS(baseline dataset

Hum Union with

random Fake dataset)

a) Preprocessing

In this section, we reduced features in order to make our dataset

lighter. First, we removed useless features and features with lots

of missing values. So, how can we tell if a feature is useful?

Attributes that have lots of different values for each user such as

name, description, URL, and ID are not practical for machine

learning algorithms. Since in machine learning algorithms such

as decision tree, unique attributes, and attributes that have

massive variety in value have a GINI index close to zero, which

means it cannot be a good separator for detecting different

classes.

IV. PROPOSED FEATURES

We have extracted features from two sources of information: the

feature of tweets and the user's information. Obviously, good

features should be informative and have discriminative power.

Some features such as followers count and friends count have

some correlation with each other so we decided to make a ratio.

a) Extracting New Features

We previously mentioned that programmers of these bots try to

find ways to evade from spam detection algorithms, therefore it

is necessary to continuously need new features and algorithms

to correctly distinguish bots.

Based on [2] we categorized attributes into three categories by

their crawling costs.

A) Profile: Features that use information in a profile account.

B) Timeline: Features that use information in tweets.

C) Relationship: Features that uses information about the

accounts that are in a relationship with followers of the target

account

As [2] mentioned features of profile have the least crawling

time and relationship features have the most time needed. Our

suggested features are only in profile and timeline category.

b) Profile Attributes

Attributes extracted from timeline need more time to collect

than attributes which can be found in profile information. In

user information, we had "created_time" so we can calculate

new attribute named "Howlong_day" that shows how long does

this account exist and no need for curling timeline. Another

attribute that we amended to be more accurate is the number of

tweets. Since the number of tweets in users’ info had slightly

different from tweet files, we calculate the exact number called

that feature "num_of_tweets."

Dou to following reasons, the number of tweets foregoing in

users’ files and the number of tweets existed in tweets file are

not the same. One of the possible reasons for this is that user

data is cached by Twitter and thus, it is not always updated on

the current number of followers, friends, statuses (tweets), etc.

Another reason might be that we were not able to collect all the

tweets produced by a user because the user deleted some of

his/her original tweets. Alternatively, because he/she

"protected" his/her timeline. The third possible reason is that

the crawling of user data and tweets have been carried out at

two slightly different times, and this may have caused

inconsistencies.

We made new ratios by combining profile attributes. These

ratios demonstrate the popularity of the account. We did this

because using only one attributes could deceive the machine

learning algorithm. For example, number of followers without

considering the number of friends could lead us to wrong

predictions.

Twitter saves each user's signup date and the time of each tweet.

We figured out how long each user has been active on Twitter

by an attribute called "Howlong_day." Spambots probably have

a shorter lifespan than real users, because spam bots may be

deactivated by Twitter spam detection system or deactivated by

programmer after some time. We assume that the more

significant this number is, the higher possibility of being a

legitimate user.

Follower counts have long provided a decent indicator of

Twitter accounts' popularity. Twitter provides a feature to make

a list of accounts that a user follows. By this feature, users can

make any list they want (brands, news, entertainment, ...), so

users can categorize each account to a list. We think this feature

can be another indicator of popularity. The more list you are on,

the more popular you probably are. So we create an attribute

called "listed_count" that shows the number of public lists a

specific user is a member of. Obviously, if the number of

followers is relatively small compared to the number of people

you are following, the follower ratio is relatively small and

close to zero. At the same time, the probability that the

associated account is spam is high.

We know a number of followers and friends are two major

attributes, and using ratio can be helpful. To consider other

attributes, we add "listed_count" attribute to this ratio and

create "Ratio1" feature. Because "listed_count" most of the

time is much smaller than the number of followers and friends,

we rose it to a power of two to infect ratio. In the ratio2 feature,

we emphasize on a number of friends by rose friends count to

the power of two. To see how tweets can attract followers, we

created "populaty_by_tweet" ratio. Growth rate considers how

fast an account absorbs followers.

Ratio1

=
followers_count + num_of_tweets

friends_count + listed_count2
 (1)

Ratio2 =
 friends_count2+num_of_tweets

followers_count
 (2)

Popularity_by_tweets

=
friends_count + number_of_tweets

followers_count
 (3)

Growth_rate =
 followers_count

howlong_day
 (4)

c) Timeline Attributes

Besides profile attributes, we select six timeline attributes that

exist in every single tweet. Since these attributes are for every

tweet, not every user, we calculate the average, variance, and

maximum of these attributes for all accounts in our dataset.

Favorite count: Shows how many users have set the tweet as a

favorite Retweet count: Demonstrates the importance of the

tweet. Retweets build on the authority of another user and are

used to increase the volume of followers to see a tweet.

Replay count: Represents the reaction of users to a certain tweet

Num hashtags: Number of hashtags in every single tweet.

Num URLs: Number of URL in every single tweet Num

mentions: Number of mentions in every single tweet These

attributes are important for us for the following reasons. Since

spam tweets are seldom retweeted, set to favorite, or replied to,

we selected these features. Spam bots are very likely to share

URLs to reach their goal like phishing, advertising, or

spreading malware. Spammers also use trending hashtags and

mention other users to be indexed in search results and more

people be able to see their tweets. For these reasons, we choose

the attributes “num_hashtags,” “num_URLs” and

“num_mentions.” We also calculated tweet lengths for each

tweet and then computed the average tweet length and created

a new attribute called “average character.”

Mention: To address a particular user in order to reference the

user directly. Mentions may be used by spammers to

personalize the message in an attempt to increase the likelihood

a victim follow spam links. Mentions can be used to

communicate with users that do not follow a spammer.

When a tweet is sent, Twitter keeps the source of the tweet. This

is embodied in the device type and application or API, which is

used to publish the tweet. We put all sources into the three

following categories:

Web: Uses Twitter web site for sending tweets.

Mobile or Tablet: Tweets sent from portable devices like

phones and tablets.

3rd Party and API: Tweets sent from applications and API

requests.

We categorized tweets for each user, then we took the most

repeated sources and made a new attribute called “Mode

Source.” Figure 1 shows the dispersion of legitimate users

against spam bots.

Figure 1 Source dispersion of legitimate users versus spam bots

So far we have created 21 features from our base dataset, which

is listed in table 2. We should test the attributes to see if they

are suitable for detecting spammer. Our new features are tested

in the following section.

Table 2: Extracted Features

Description Name #

Average

number of

tweet

character

Average_character 1.

Average

number of

tweets

favorite

Average_favorite_count 2.

Average

number of

hashtags in

tweets

Average_num_hashtags 3.

Average

number of

mention in

tweets

Average_num_mentions 4.

Average

number of

URL in

tweets

Average_num_urls 5.

Average

number of

replay for

tweets

Average_reply_count 6.

Average

number of

retweet of

their tweets

Average_retweet_count 7.

Variance of

favorite

count

Variance_favorite_count 8.

Variance of

number of

hashtags in

tweets

Variance_num_hashtags 9.

Variance of

number of

mentions in

tweets

Variance_num_mentions 10.

Variance of

number of

URL in

tweets

Variance_num_urls 11.

Variance of

number of

replay to

tweets

Variance_reply_count 12.

Variance of

number of

retweeted

tweets

Variance_retweet_count 13.

Source that

users

mostly

used for

tweeting

Mode_of_source 14.

Maximum

number of

Maximum_

favorite_count
15.

favorite

tweet

Maximum

number of

hashtags in

one tweet

Maximum_num_hashtags 16.

Maximum

number of

URLs in

one tweet

Maximum_num_urls 17.

Maximum

number of

replay to

one tweet

Maximum_reply_count 18.

Maximum

number of

mentions in

one tweet

Maximum_num_mentions 19.

Maximum

number of

retweeted

tweet

Maximum_retweet_count 20.

Number of

days that

users

register up

to now

Howlong_day 21.

d) Evaluation Methodology

We have two classes in our dataset: humans and bots

(spammers).

• True Positive (TP): the number of those bots recognized as

bots;

• True Negative (TN): the number of those humans followers

recognized as human;

• False Positive (FP): the number of those humans recognized

as bots;

• False Negative (FN): the number of those bots recognized as

human.

In order to evaluate the application of every single rule to the

accounts in the baseline dataset, we have to consider the

following standard evaluation metrics:

• Accuracy: the proportion of predicted true results (both true

positives and true negatives) in the population, that is
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁

• Precision: the ratio of predicted positive cases that are indeed

real positive, which is
𝑇𝑃

𝑇𝑃+𝐹𝑃

• Recall: the ratio of real positive cases that are indeed predicted

positive, which is
𝑇𝑃

𝑇𝑃+𝐹𝑁

• F-Measure: the harmonic mean of precision and recall,

namely
2∗precision∗recall

precision+recall

• The area under the curve (AUC): that relates the hit rate to the

false alarm rate has become a standard measure in testing the

accuracy of predictive modeling.

e) Testing Our Features

To obtain the optimal classifier, this is crucial to combine the

features effectively. We test our new features using k-fold

Cross-validation decision tree algorithms. In k-fold cross-

validation, the original sample is randomly partitioned into k

equal size subsamples. Of the k subsamples, a single subsample

is retained as the validation data for testing the model, and the

remaining k-1 subsamples are used as training data. The cross-

validation process is then repeated k times (the folds), with each

of the k subsamples used exactly once as the validation data.

The k results from the folds can then be averaged (or otherwise

combined) to produce a single estimation. The advantage of this

method is that all observations are used for both training and

validation, and each observation is used for validation exactly

once.

We assayed each attribute alone in 10-fold validation using a

decision tree algorithm. The result is shown in Table 3.

Table 3: Testing new attributes by 10 k fold validation decision

tree

F-

Measu

re

Reca

ll

Precisi

on

Accura

cy
Attribute #

79.91
79.9

2
79.94 80.03 Average_character 1.

89.90
90.6

6
89.19 89.85

Average_favorite_co

unt
2.

82.70
83.2

3
82.32 82.69

Average_num_hasht

ags
3.

90.81
86.4

0
95.79 91.33

Average_num_menti

ons
4.

83.48
73.1

8
97.20 85.59 Average_num_urls 5.

84.15
74.5

4
96.71 86.00 Average_reply_count 6.

80.99
86.3

8
78.21 79.95

Average_retweet_co

unt
7.

89.74
92.8

1
86.93 89.44

Variance_favorite_co

unt
8.

83.58
78.2

5
89.74 84.67

Variance_num_hasht

ags
9.

89.51
83.8

6
96.06 90.26

Variance_num_menti

ons

10

.

83.52
73.1

9
97.33 85.64 Variance_num_urls

11

.

87.66
83.4

9
92.54 88.28

Variance_reply_coun

t

12

.

77.37
65.6

7
94.43 80.95

Variance_retweet_co

unt

13

.

78.40
90.1

4
69.44 75.23 Mode_of_source

14

.

89.05
89.5

2
88.65 89.05

Maximum_favorite_

count

15

.

89.93
88.5

5
91.37 90.15

Maximum_num_has

htags

16

.

82.56
71.4

0
97.91 84.97 Maximum_num_urls

17

.

62.79
50.9

3
81.95 69.85

Maximum_reply_cou

nt

18

.

90.86
86.4

4
95.80 91.38

Maximum_num_men

tions

19

.

87.39
79.6

9
96.82 88.56

Maximum_retweet_c

ount

20

.

84.74
75.3

3
96.98 86.46 Howlong_day

21

.

96.72
95.9

3
97.56 96.77 Ratio1

22

.

94.42
96.8

6
92.1 94.31 Ratio2

23

.

85.11
92.4

2
78.98 83.90

Popularity_by_tweet

s

24

.

86.94
94.8

0
80.31 85.79 Groth_rate

25

.

The result of our features average compares to previous work

which is mentions in [2] average is shown in table 4. The result

shows an observable increase in accuracy, precision, recall, and

F-measure. The accuracy of 86.04% for average singe feature

confirm these features are good.

Table 4: Average of Single feature comparison

Average

of Single

Feature

Accuracy Precision Recall
F-

Measure

Camisani-

Calzolari
64.4 71.3 58.18 54.02

Van Den

Beld
41.36 41.36 68.12 18.65

Social

Bakers
50.2 66.26 4.9 69.2

Our

features
86.04 89.77 82.54 85.28

We test our 4 ratios together by 10-fold validation and different

machine learning algorithms. We did this because our 4 ratios

are extracted from profile information and need less time to

acquire.

Table 5: Result of all rules together for 10 fold validation

F-

Measure

Recall Precision Accuracy Algorithm #

98.30 97.69 98.92 98.31 Decision

Tree

1.

97.83 96.59 99.11 97.87 Random

Forest

2.

98.39 97.82 98.97 98.38 AdaBoost 3.

95.05 92.34 97.98 95.18 Naïve

Bayes

4.

Although we only use profile information in our ratio, the

results are remarkable. We achieve the accuracy of 98.38% by

using profile information and AdaBoost algorithm. We want to

go farther and add our extracting timeline features to this ratio

to make it even better. In the next section, we describe it more.

f) Finding Best Feature Set

After testing attributes one by one now it is time to find the best

feature set for getting the best result. We used “Forward

Selection” algorithms in RapidMiner software to find the best-

combined features.

The Forward Selection operator starts with an empty selection

of attributes and, in each round, it adds each unused attribute of

the given Example Set. For each added attribute, the

performance is estimated using the inner operators, in this case,

cross-validation. Only the attribute giving the highest increase

in performance is added to the selection. Then a new round is

started with the modified selection. This implementation avoids

any additional memory consumption besides the memory used

originally for storing the data and the memory which might be

needed for applying the inner operators. The stopping behavior

parameter specifies when the iteration should be aborted. There

are three different options:

Without increase: The iteration runs as long as there is an

increase in performance.

Without an increase of at least: The iteration runs as long as the

increase is at least as high as specified, either relative or

absolute. The minimal relative increase parameter is used for

specifying the minimal relative increase if the use relative

increase parameter is set to true. Otherwise, the minimal

absolute increase parameter is used for specifying the minimal

absolute increase.

Without significant increase: The iteration stops as soon as the

increase is not significant to the level specified by the alpha

parameter.

We gave all our extracted features to the forward selection

algorithm and choose stopping behavior to be iteration without

a significant increase. The output of this operator will be a list

of all attributes with weights 0 or 1, which 1 means good to

select and 0 means not have a significant effect on the validation

result and not selected. Table 6, shows a list of the most

effective attributes for the detection model.

Table 6: Selected Attributes Using a Forward Selection

Algorithm.

Weights Attributes #

1 Average_reply_count 1

1 Ratio1 2

1 Ratio2 3

1 Popularity_by_tweets 4

1 Variance_favorite_count 5

V. RESULT

In Table 7, we can see the result of our feature set on the base

dataset.

Table 7: Result of our feature set by 10 fold validation

AU

C

F-

Measu

re

Reca

ll

precisi

on

Accura

cy

Algorith

m

0.99

3

99.17 99.0

2

99.32 99.18 Decisio

n Tree

1

.

0.99

8

 98.85 98.5

9

 99.11 98.87 Random

Forest

2

.

0.79

6

98.53 98.5

6

98.52 98.54 AdaBoo

st

3

.

0.98

9

62.08 45.2

3

 99.06 72.66 Naïve

Bayes

4

.

0.95

1

 92.02 91.8

5

 92.23 92.05 K

Nearest

Neighbo

rs

5

.

In comparison to [10], we got the same result with fewer

features. We only used profile information and timeline

features and we do not imply relationship features to our feature

set. It means that the time of crawling for features is much less

than [10] research.

Table 8 is comparing the result of two previous research [10],

[7] that have been mentioned on [2] by the same dataset that we

used in our work. Our detection system has higher accuracy

than [7].

Table 8: Compare the result to previous works

Algorith

ms

Suggest

ed by

Accura

cy

Precisi

on

Reca

ll

F-

Measu

re

AU

C

Random

Forest

Stringhi

ni

.981 .983 .979 .981 .99

5

Yang .991 .991 .991 .991 .99

8

Our .9887 .9911 .985

9

.9885 .99

8

Decision

Tree

Stringhi

ni

.979 .984 .974 .979 .98

5

Yang .990 .991 .989 .990 .99

7

Our .9918 .9932 .990

2

.9917 .99

3

Adaptiv

e Boost

Stringhi

ni

.968 .965 .970 .968 .99

5

Yang .988 .989 .937 .988 .99

9

Our .9854 .9852 .985

6

.6208 .98

9

K-NN

Stringhi

ni

.954 .961 .946 .953 .97

4

Yang .966 .966 .966 .966 .98

3

Our .9205 .9223 .918

5

.9202 .95

1

In [2], they used features from the profile category proposed by

others which contains 23 features after that they used all

features without considering the timing category which

contains 49 features. Table 9 reports the result of k fold

validation on our suggested five features and compare it to 23

features of profile category and 49 features from all categories

presented in [2].

Table 9: Result of Our 5 Features Compare to 23 Features and

49 Features

Algorith

ms

Featur

es

Accura

cy

Precisi

on

Reca

ll

F-

Measu

re

AU

C

Random

Forest

49

feature

s

.994 .997 .990 .994 .999

23

Featur

es

.987 .993 .980 .987 .995

Our5

Featur

es

.9887 .9911
.985

9
.9885 .998

Decision

Tree

49

feature

s

.992 .991 .992 .992 .993

23

Featur

es

.983 .987 .979 .983 .983

Our5

Featur

es

.9918 .9932
.990

2
.9917 .993

Adaptive

Boost

49

feature

s

.987 .988 .987 .987 .999

23

Featur

e

.972 .975 .969 .972 .995

Our5

Featur

es

.9854 .9852
.985

6
.6208 .989

K-NN

49

feature

s

.971 .963 .979 .971 .990

23

Featur

es

.957 .961 .953 .957 .978

Our5

Featur

es

.9205 .9223
.918

5
.9202 .951

We realize from table 9 that our suggested features have more

accuracy than the 23 profile features suggested before.

Although our features come with slightly less accuracy by

comparing them to 49 features, we should consider the time for

gathering relationship features is much more from features from

profile and timeline.

VI. FUTURE WORKS

In the future, we can aim for new features based on text mining

and analyzing tweets, and if tweets meaning are related to the

hashtag, they are making or not. Also, some new behavioral

features, such as the speed of replying to tweets and making

trending hashtags can be considered.

REFERENCES

[1]'Compete Site Comparison'

<http://siteanalytics.compete.com/facebook.com+myspace.com+twitter.c

om> accessed 11 June 2016.

[2] Cresci, S., Di Pietro, R., Petrocchi, M., Spognardi, A., Tesconi, M. (2015).

Fame for sale: Efficient detection of fake Twitter followers. Decision

Support Systems, 80, 56-71.

http://dx.doi.org/10.1016/j.dss.2015.09.003

[3] '388 Amazing Twitter Statistics And Facts' (expandedramblings, 2015)

<http://siteanalytics.compete.com/facebook.com+myspace.com+twitter.c

om> accessed 10 May 2016.

[4] Ghosh, S., Korlam, G., Ganguly, N. (2011). Spammers' networks within

online social networks. Proceedings Of The 20Th International Conference

Companion On World Wide Web - WWW '11.

http://dx.doi.org/10.1145/1963192.1963214

[5] Lee, K., Caverlee, J., Webb, S. (2010). Uncovering social

spammers. Proceeding Of The 33Rd International ACM SIGIR

Conference On Research And Development In Information Retrieval -

SIGIR '10. http://dx.doi.org/10.1145/1835449.1835522

[6] McCord, M., Chuah, M. (2011). Spam Detection on Twitter Using

Traditional Classifiers. Lecture Notes In Computer Science, 175-186.

http://dx.doi.org/10.1007/978-3-642-23496-5_13

[7] Stringhini, G., Kruegel, C., Vigna, G. (2010). Detecting spammers on social

networks. Proceedings Of The 26Th Annual Computer Security

Applications Conference On - ACSAC '10.

http://dx.doi.org/10.1145/1920261.1920263

[8] Wang, A. (2010). Detecting Spam Bots in Online Social Networking Sites:

A Machine Learning Approach. Lecture Notes In Computer Science,

335-342. http://dx.doi.org/10.1007/978-3-642-13739-6_25

[9] Weiss, G., Provost, F. (2003). Learning When Training Data are Costly:

The Effect of Class Distribution on Tree Induction.

[10] Yang, C., Harkreader, R., Gu, G. (2013). Empirical Evaluation and New

Design for Fighting Evolving Twitter Spammers. IEEE Transactions On

Information Forensics And Security, 8(8), 1280-1293.

http://dx.doi.org/10.1109/tifs.2013.2267732

[11] Yardi, S., Romero, D., Schoenebeck, G., Boyd, D. (2009). Detecting

spam in a Twitter network. First Monday, 15(1).

http://dx.doi.org/10.5210/fm.v15i1.2793

[12] Yu, H., Kaminsky, M., Gibbons, P., Flaxman, A. (2006).

SybilGuard. ACM SIGCOMM Computer Communication Review, 36(4),

267. http://dx.doi.org/10.1145/1151659.1159945

[13] Yu, S., Kak, S. (2012). A Survey of Prediction Using Social Media.long.

http://dx.doi.org/10.1016/j.dss.2015.09.003
http://dx.doi.org/10.1145/1963192.1963214
http://dx.doi.org/10.1145/1835449.1835522
http://dx.doi.org/10.1007/978-3-642-23496-5_13
http://dx.doi.org/10.1145/1920261.1920263
http://dx.doi.org/10.1007/978-3-642-13739-6_25
http://dx.doi.org/10.1109/tifs.2013.2267732
http://dx.doi.org/10.5210/fm.v15i1.2793
http://dx.doi.org/10.1145/1151659.1159945

